Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders

نویسندگان

  • Yoshua Bengio
  • Guillaume Alain
  • Salah Rifai
چکیده

Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of the unknown data generating density. This paper contributes to the mathematical understanding of this phenomenon and helps define better justified sampling algorithms for deep learning based on auto-encoder variants. We consider an MCMC where each step samples from a Gaussian whose mean and covariance matrix depend on the previous state, defines through its asymptotic distribution a target density. First, we show that good choices (in the sense of consistency) for these mean and covariance functions are the local expected value and local covariance under that target density. Then we show that an auto-encoder with a contractive penalty captures estimators of these local moments in its reconstruction function and its Jacobian. A contribution of this work is thus a novel alternative to maximum-likelihood density estimation, which we call local moment matching. It also justifies a recently proposed sampling algorithm for the Contractive Auto-Encoder and extends it to the Denoising Auto-Encoder.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Auto-Encoders Estimate Local Statistics

What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of the unknown data generating density. This paper clarifies some of these previous intuitive observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstructi...

متن کامل

Generalized Denoising Auto-Encoders as Generative Models

Recent work has shown how denoising and contractive autoencoders implicitly capture the structure of the data-generating density, in the case where the corruption noise is Gaussian, the reconstruction error is the squared error, and the data is continuous-valued. This has led to various proposals for sampling from this implicitly learned density function, using Langevin and Metropolis-Hastings ...

متن کامل

Rate-Distortion Auto-Encoders

A rekindled the interest in auto-encoder algorithms has been spurred by recent work on deep learning. Current efforts have been directed towards effective training of auto-encoder architectures with a large number of coding units. Here, we propose a learning algorithm for auto-encoders based on a rate-distortion objective that minimizes the mutual information between the inputs and the outputs ...

متن کامل

What regularized auto-encoders learn from the data-generating distribution

What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of data. This paper clarifies some of these previous observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes th...

متن کامل

Analyzing the Dynamics of Gated Auto-encoders

Auto-encoders are perhaps the best-known non-probabilistic methods for representation learning. They are conceptually simple and easy to train. Recent theoretical work has shed light on their ability to capture manifold structure, and drawn connections to density modeling. This has motivated researchers to seek ways of auto-encoder scoring, which has furthered their use in classification. Gated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1207.0057  شماره 

صفحات  -

تاریخ انتشار 2012